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Mathematical modelling of avascular-tumour growth
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A system of nonlinear partial differential equations is proposed as a model for the growth
of an avascular-tumour spheroid. The model assumes a continuum of cells in two states,
living or dead, and, depending on the concentration of a generic nutrient, the live cells may
reproduce (expanding the tumour) or die (causing contraction). These volume changes
resulting from cell birth and death generate a velocity field within the spheroid. Numerical
solutions of the model reveal that after a period of time the variables settle to a constant
profile propagating at a fixed speed. The travelling-wave limit is formulated and analytical
solutions are found for a particular case. Numerical results for more general parameters
compare well with these analytical solutions. Asymptotic techniques are applied to the
physically relevant case of a small death rate, revealing two phases of growth retardation
from the initial exponential growth, the first of which is due to nutrient-diffusion limitations
and the second to contraction during necrosis. In this limit, maximal and 'linear' phase
growth speeds can be evaluated in terms of the model parameters.

Keywords: tumour growth; avascular; mathematical modelling; numerical solution; asymp-
totic analysis.

1. Introduction

Solid tumours arise from an alteration of a cell's genetic material causing it to respond
differently to the host's growth regulators and this leads to the uncontrolled growth of these
cells (Melicow, 1982). The early tumour cells, like the neighbouring normal cells, can ob-
tain adequate nourishment (such as glucose and oxygen) from the existing vasculature, and
hence the proliferation rate of these cells is regular, producing a growing spheroid of cells
expanding at a near exponential rate. As the tumour grows the amount of nutrient that man-
ages to diffuse to the centre decreases due to consumption by the outer cells and eventually
the central cells become so deficient that their proliferative rate is reduced and cell division
may indeed cease, with these cells becoming quiescent. These quiescent cells are still vi-
able and they can recover on the restoration of sufficient nutrient (Freyer & Schor, 1987).
This reduction of proliferation within the spheroid retards its growth. As the tumour grows
further, the continued absence of nutrients in the central regions will cause the cells there
to die, forming a region of dead cells known as a necrotic core. As the spheroid continues
to develop, the rim of adequately nourished viable cells at the surface becomes roughly
constant in size, leading to a phase of near linear growth (Conger & Ziskin, 1983; Freyer
& Sutherland, 1986). Eventually, after a period of a few weeks, the combined action of
necrotic disintegration, accumulation of waste products (Vaupel et ai, 1981), mitotic in-
hibitory factors (Freyer, 1988) and cell shedding (Landry et ai, 1981) reduces the rate of
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growth of in vitro tumours, leading to a spheroid of a maximal (saturation) size (Inch et
al, 1970; Folkman & Hochberg, 1973; Haji-Karim & Carlsson, 1978). At growth satura-
tion there is still a relatively thin rim of proliferating cells, which reproduce at a rate that
declines with depth into the tumour (Carlsson, 1977). However, tumours in vivo continue
to develop by releasing agents known as tumour-angiogenesis factors (TAFs) which stimu-
late the growth of new capillaries from the neighbouring vasculature into the tumour mass,
replenishing the supply of nutrients deeper in the tumour and allowing growth to continue
to sizes well beyond the saturation level (Folkman, 1971). Beyond this level, malignant
tumours may become invasive (metastatic), utilizing the body's cavities and vasculature to
settle elsewhere, forming secondary growths in the host.

Mathematical models that relate the diffusion of nutrients and tumour heterogeneity
were first proposed by Thomlinson & Gray (1955) and then extended by Burton (1966)
to link tumour growth with the size of the region in which the nutrient concentration is
greater than some critical level. Greenspan (1972) later proposed a model which attempts
to capture all the phases of avascular growth by adding the action of a mitotic inhibitor
(produced within the tumour) and necrotic decomposition and by dividing the tumour into
distinct compartments of proliferating, quiescent, and necrotic cells. This model thus in-
corporated the various phases of growth leading to saturation. A number of extensions to
the Greenspan model have been investigated (Deakin, 1975; Maggelakis & Adam, 1990;
Maggelakis, 1992). A crucial feature of the Greenspan model is that the contraction rate
is proportional to the size of the necrotic core; McElwain & Morris (1978) showed that
similar qualitative behaviour can be achieved by assuming that the only source of cell con-
traction is through apoptosis ('programmed' cell death, Moore, 1987) in the viable rim.
Glass (1973) studied a single quasisteady reaction-diffusion equation for the inhibitor dis-
tribution in a tumour and its effects on eventual tumour saturation; this study has also
spawned many subsequent investigations involving the effects of geometry and of different
source functions representing tumour heterogeneity (Shymko & Glass, 1976; McElwain
& Ponzo, 1977; Adam, 1986, 1987a,b; Adam & Maggelakis, 1989; Chaplain & Britton,
1993); however, Chaplain et al. (1994) showed that the same qualitative behaviour can be
obtained from a spatially varying diffusion coefficient. More recently, Byrne & Chaplain
(1996) extended the assumptions of Greenspan to include the effects of apoptosis, and they
generalized the assumptions on the inhibitor so that it could be viewed as the application
of an anticancer drug. A very detailed model proposed by Casciari et al. (1992a) stud-
ies the evolution of the distributions of seven important metabolites within the spheroid,
linking their concentrations with a simple growth equation to produce moderate agreement
with experimental data. The effects of cell migration due to convection, diffusion, and
chemotaxis (up nutrient gradients) were studied by McElwain & Pettet (1993) to model
experimental observations of the drifting of probes from the viable rim of spheroids to the
necrotic core. Their approach generalized the growth- and nutrient-consumption terms of
Greenspan; however, in contrast to the model presented in this paper, these terms were
taken to be independent of the local live-cell density. These diffusion models all assume
that the tumour is avascular and that the surface is the only source of nutrient; however,
Byrne & Chaplain (1995) included a source of nutrient within a non-necrotic tumour in
order to model the growth of a vascularized tumour.

The model presented in this paper takes a rather different approach, although it again di-
rectly links growth with the local nutrient concentration. The model describes a continuum
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of live cells which, through local volume changes by cell growth and death, create move-
ment described by a velocity field. The convective process within a spheroid during growth
is thus considered. Previous models define cells to be dead when the nutrient concentration
drops below some threshold; the current model differs from such models by assuming that
cells die (and then contract) at a rate which depends on the local nutrient concentration;
that is, cell death is a gradual process which does not occur instantaneously as a response
to low-nutrient conditions. Note that, in contrast to previous diffusion models, no assump-
tions are made a priori about the tumour structure, the heterogeneity of the tumour being
obtained from the solutions. The model is presented in Section 2 and, although it lacks
mechanisms to cause growth saturation in its present form, the early exponential phase and
the retardation to linear growth are demonstrated from the numerical simulations described
in Section 3. In Section 4 the travelling-wave limit of the model is derived to capture the
tumour's behaviour during the linear-growth phase, and analytical solutions are presented
for a certain limiting case. Asymptotic analysis, based on a small-death-rate assumption, is
carried out in Section 5, where, following on from an initial 'exponential' phase, two longer
phases of growth retardation occur, the first of which is due to nutrient-diffusion limitations
within the spheroid and the second to cellular contraction during necrosis through contin-
ued absence of nutrient in the core.

2. Tumour-growth model

2.1 Mathematical model

The aim of this study is to develop a deterministic tumour-growth model, capturing tumour
heterogeneity without introducing distinct regions a priori, that is simple enough to be
mathematically tractable. The tumour is viewed as an agglomeration of matter consisting of
a continuum of cells in two states, living and dead. In the living state the matter is assumed
to be able to expand (due to cell growth and division) at a rate which is dependent on the
local availability of nutrient (treated as a single generic species). The irreversible transition
from the live state to the dead state is assumed to cause a spontaneous volume loss, and
its rate also depends on the local nutrient concentration. The local volume changes caused
by these processes produces movement of the cells. The main quantities appearing in the
model can be identified from this picture of tumour behaviour, namely, the distributions
of the living cells and of the nutrient which fuels growth, together with the velocity field
inside the tumour caused by the growth and death of cells.

We take n(x, t) and m(x, t) to be the living-and dead-cell concentrations, respectively,
v(x, t) to be the local velocity of cells, and c(x, t) to be the nutrient concentration. The
equations governing n and m are

on
— + V-(un) = [km(c) - k6(c)]n, (2.1)
at

dm
— + V-(wn) = kd(c)n, (2.2)
at

where km and kd are the rates of cell mitosis and cell death, respectively, which are pre-
scribed below. Equation (2.1) states that the rate of change of n is determined by the dif-
ference in the rates of mitosis and death of the cells. The rate of change of m must equal
the death rate of cells, leading to equation (2.2).
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The rates of mitosis, km(c), and death, /fcd(c), are assumed to be bounded and, re-
spectively, increasing and decreasing functions of nutrient concentration, with km(0) =
0, km(oo) = A, kd(0) = B, and id(oo) = fl(l - a), where A and B are positive
constants and 0 ^ a < 1. We adopt simple functional forms consistent with these assump-
tions; namely,

Ac
M c ) = ^T^' (23)

where the exponents m\, m2 > 0 govern the sharpness of change near the 'critical' concen-
trations cc and c<j. Note that, even in optimal nutrient conditions, kd > 0, implying that cell
death still occurs, which reflects cell loss through apoptosis. These equations generalize
the Michaelis-Menten kinetics (wii = nij = 1) which are often used to model cell kinetics
(Lin, 1976; McElwain, 1978) and cellular nutrient consumption in tumours (Casciari et
al., 1992b; Hlatky et al, 1988; Li, 1982a). The limits m,, m2 -> oo reduce km and kd to
discontinuous step-function forms; namely,

km(c) = AH(c - cc),
*d(c) =B[\-oH(c-cd)], ^J)

where H(-) is the Heaviside function; this will provide a useful simplification in future
analysis.

We define VL and VD to be the mean volumes of a single living and dead cell, respec-
tively; VD < VL is assumed. It is assumed that the rate of volume change drives the move-
ment of the cells, so the equation for the velocity v is given by

V- v = km(c)nVL - kd(c)n(VL - VD), (2.6)

which states that the rate of volume change is given by the difference between the rates of
volume increase, kmnVL, and decrease, /fcdn(VL — ^D), w n e r e ^L — VD is the spontaneous
volume loss due to the death of a cell. It is assumed that the time scale of volume loss on
cell death is much shorter than that of tumour growth.

The tumour is treated as being avascular, obtaining its nutrients only from the surround-
ing tissue or matrix through the tumour surface; the distribution of nutrient is governed by
diffusion and consumption. It is assumed that Fick's laws model the diffusion of the nu-
trient into the interior of the tumour, with the diffusion coefficient D taken to be constant
since spheroid heterogeneity does not significantly affect diffusion rates (Casciari et al.,
1988). It is assumed that the rate at which the nutrient is consumed is governed by two
terms, the first represents nutrient consumption by normal (that is, nonmitotic) processes,
y(c)n, while the second describes the additional amount consumed during mitosis and is
given by f)km(c)n. Combining these assumptions yields the following equation for c:

^ + V-( we) = V-(DVc) - [pkm(c) + y(c)]n, (2.7)
at

provided that c remains non-negative. It has been reported in several studies that oxygen
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(Mueller-KJieser & Sutherland, 1982; Mueller-Klieser et al, 1985; Hlatky etal., 1988) and
glucose (Li, 1982a; Mueller-Klieser et al, 1983) concentrations in the interior of larger
spheroids can be negligible. Equation (2.7) may predict that c becomes negative if y(c)
is, for example, nonvanishing as c -*• 0. If this possibility arises we must further impose
continuity of c and its normal derivative at a moving boundary (say F(t)) enclosing a
region with zero concentration, so that on F(t) we have c = Vc- n = 0.

Since m does not occur in equations (2.1), (2.6), and (2.7), it is decoupled from the other
variables. We assume there are no voids, so it follows that m is given by

VLn(x,t)+VDm(x,t) = 1; (2.8)

this can also be derived from (2.1), (2.2), and (2.6).
We will henceforth exploit the spherical symmetry of the problem and hence, in particu-

lar, we avoid the need to prescribe constitutive equations to determine v. This simplifica-
tion implies that the three equations (2.1), (2.6), and (2.7) are adequate to determine n, c,
and the radial velocity v as functions of the independent variables r = \x\ and t.

To complete the above system we must impose appropriate initial and boundary condi-
tions. We shall take the initial state of the tumour to be a single mutated cell whose radius
5(0) is given by (2.9), 5(0 being the spheroid radius as a function of time and thus it is the
coordinate of a moving boundary. While a continuum approach cannot then be expected to
be valid for very small times, it rapidly becomes acceptable as cell multiplication produces
a significant number of cells. The following initial conditions are therefore adopted:

5(0) = (3VL /4JT)*, n(r,0) = l/VL, c(r,0) = co, (2.9)

where the constant CQ is the external nutrient concentration.
As boundary conditions we impose:

^ = u ( 5 ( 0 , 0 , c ( 5 ( 0 , 0 = c 0 , (2.10)

9c(0, 0
= 0, v(0,0 = 0. (2.11)

or

where the first boundary condition of (2.10) states that the spheroid boundary moves with
the local velocity.

2.2 Non-dimensionalization

Denoting dimensionless variables by carets, we introduce the following rescalings which
are based on the initial conditions:

n = n/VL, c = CQC,

t = i/A, r = ror, 5 = ro5,

where r0 = 5(0) = (3VL/4^) I /3. We thus obtain the following system

—+ i>— = [a(c)-b(c)n]n, (2.12)
dt dr
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W-*©*. (2.,4,
r2 dr

where the reaction terms a(c), b(c), and k(c) are given in terms of the dimensionless quan-
tities

c"" - B

where cc = cc/co and c<j = C^/CQ, by the expressions

o(c) = km(c) - Uc), (2.15)

= km(c) - (1 - «)Ad(c) = a(c) + a£d(c), (2.16)

L (2-17)

and where S = VD/VL e [0, 1], /S = ro
2/3/\/DKLco, y(c) = ^y(c)/DVLc0, and v =

Arl/D. The function a(c) represents the rate of population growth, b(c) represents the
rate of volume change, and k(c) is proportional to the rate of consumption of nutrient. Note
that these three functions are monotonically increasing in c and, since km, £d ^ 0, we have
a(c) ^ b(c). In what follows the carets are dropped from the variables and parameters;
however, in the Appendix quantities without carets revert to being dimensional quantities.

Using the data given in the Appendix, the time scale I/A is about 14 hours and we have
v % 10~5; henceforth we therefore replace (2.13) by the quasisteady approximation

l—)=k(c)n. (2.18)
dr J

It is unlikely that the nutrient-consumption rate is directly proportional to the rate at which
mitosis occurs, hence the inclusion of y(c) in k(c). Nevertheless, as described in the Ap-
pendix, experimental results suggest that it suffices to take y(c) = 0, and we shall hence-
forth adopt this assumption.

To complete this system the dimensionless initial and boundary conditions are

n(r, 0 ) = l , 5(0) = 1, (2.19)
d5 dc(0 t)

c ( 5 ( 0 , / ) = l , — =i> ( 5 ( 0 , 0 . = 0, v(0, t) = 0. (2.20)
at dr

The system thus consists of the first-order partial differential equation (2.12), the second-
order (quasisteady) differential equation (2.18), and the first-order equation (2.14), defined
on a domain r < 5(0 with an unknown moving boundary 5(0. It is worth noting that we
may easily solve for n (5(0, /)), giving

a0)e°0)l

this gives an upper bound on n(r, t).
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3. Numerical solution

3.1 Numerical methods

The system (2.12, 2.14, 2.18-2.20) is solved numerically after first fixing the moving
boundary by writing r = S(t)r\ thus mapping the tumour onto the unit interval. The
equations are solved sequentially using finite-difference methods in a predictor-corrector
scheme: first, S(t) is updated using the trapezium method; equation (2.18) is approxi-
mated using die National Algorithms Group (NAG) routine D02RAF, which uses a finite-
difference approach; the trapezium method is also used to approximate equation (2.14);
finally, an implicit, second-order accurate extension to the scheme proposed by Courant
et al. (1952, §1), is adopted for approximating (2.12). This sequence is then repeated on
the correction loops. For large S the rescaling has the drawback (for a uniform mesh) of
condensing the regions of most variation into a boundary layer of 0{S~x). This is partly
overcome by the use of a contracting mesh, where successive spatial increments are deter-
mined by A/-J+1 = AArj, where ArJ is the size of the y'th increment and A. is a constant
factor less than one.

3.2 Numerical results

Figure 1 shows the spheroid radius as a function of time and Figs. 2-4 show the distribu-
tions of the dependent variables n, c, and v, respectively, at equal time intervals, for the
physically motivated parameter values (see the Appendix) B/A = 1, a = 0.9, S =
0.5, 0 = 0.005, cc = 0.1, Cd = 0.05, mx =m2= 1. Observe that, after an initial period
in which the rate of growth increases in Fig. 1 (roughly t < 10), the growth slows down,
ultimately becoming linear. A close inspection of the curve for 15 < t < 20, say, reveals

10 20 30 40 50 60 70 80 90 100

FIG. 1. The dimensionless tumour radius, 5(r), plotted against time. In dimensional terms I = 1 typically repre-
sents 14 hours and the speed of linear growth is approximately 2/imh"1 .
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FIG. 2. The spatial distribution of the live-cell density for four values of/.
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FIG. 3. The nutrient concentration plotted against radius for four values of /.

a slight kink as the growth rate decelerates a little before reaching the linear phase. This
behaviour is predicted in the analysis of Section 5 and is due to the time delay from when
cells become quiescent to when they die; this feature does not seem to have been predicted
in previous studies. The live-cell density (Fig. 2) is relatively constant in a small region
beneath the cell surface, dropping sharply towards zero deeper into the tumour, reflecting
a well-defined viable rim and a necrotic core. It should be stressed that such regions arise
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FlG 4. The velocity plotted against radius for four values of (.

naturally from the model rather than being assumed a priori. The nutrient concentration
(Fig. 3) decreases sharply through the viable rim and tends to a constant level in the core
(O(10~3) in this case), due to the nearly complete necrosis (n « 0) in this region. Although
the cells at the surface are adequately nourished, the slight decline in cell density there re-
flects loss by apoptosis. The velocity within the tumour (Fig. 4) decreases very rapidly from
a positive value towards a negative minimum, before approaching zero in the necrotic core.
The region of negative velocity reflects the fact that volume loss by cell death is greater
there than the volume gain through mitosis. The initial exponential increase in the cell
population and the eventual retardation is depicted in Fig. 5. The growth falls away from
the exponential phase when the spheroid consists of O(K)5) cells; this is consistent with
experimental observations (for example, Koch etai, 1973; Freyer & Sutherland, 1986) in
fairly generous nutrient conditions.

The sources for much of the data used for this simulation are indicated in the Appendix,
the remainder being 'best' estimates. Quantitatively, the simulation predicts a growth speed
during the linear phase of around 2 /zm h~\ which is consistent with the reported speeds
of approximately 1-3 /zmh"1 measured by Conger & Ziskin (1983) and of 1 /zmh"1

measured by Li (1982b). Further, the width of the viable rim (say where n > 0.5) is
equivalent to about 20 cells, which overestimates some reported widths. In terms of the
model, these features depend crucially on the size of function k(c) and on the external
nutrient concentration. For example, setting /? = 0.01, cc = 0.2, and a = 0 . 1 instead
leads to a growth speed of about 1.1 ^mh~' and to a viable-rim thickness of about 10
cells; this is more consistent with the reported experimental results.
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FIG. 5. A plot of log10 (spheroid cell population) against time

4. Large-time behaviour

4.1 Formulation of travelling-wave equations

The numerical results suggest that after the initial transient behaviour the tumour growth
becomes nearly linear, with the profiles maintaining a fixed shape while propagating out-
wards. This type of behaviour is consistent with experimental observations in the interme-
diate phase of spheroid growth. In order to understand the behaviour of the model during
this phase we now consider the travelling-wave limit of the model equations (2.12-2.14).
We assume that at large times the tumour grows with a constant speed U (which remains to
be determined), so S(f) ~ Ut, and we introduce a travelling-wave coordinate z = r- S(t),
with z < 0. The following system of ordinary differential equations then represents the
leading-order balance in the viable rim as t —• oo:

(v - U)n' = [a(c) - b{c)n]n,

c" = k(c)n,

v' = b(c)n,

(4.1)

(4.2)

(4.3)

where the primes denote differentiation with respect to z; the terms in r ' d/dr are 0 ( 5 ')
as S -*• oo and are thus negligible as t -*• oo.

This system is subject to the following boundary conditions:

n(0) = a ( l ) / b ( l ) , c(0) = l, v(O) = U, c'(-oo) = 0, u(-oo) = 0, (4.4)

which all follow from (2.20) and (2.21) as f - • oo. The first of these boundary conditions
is equivalent to the requirement that n'(0) be bounded.

Observe that we are left with a fourth-order system with five boundary conditions; this
system is sufficient to determine the unknown wave speed t/and the four variables n, c, c',
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and v. Using (4.3) together with [(v — U)n]' = a(c)n we obtain the following integral
equation for n:

/
Jz

(4-5)

4.2 Analytical solutions for step-function forms ofkm and kd

Analytical solutions to (4.2—4.5) can be found in the step-function limits for mitotic and
death-rate functions, corresponding to taking m\,mi —*• oo, with

a(c) = H(c - cc) - B[\ -oH(c- cd)]/A,
b(c) = a{c) + SB[\ - oH{c - cd)]/A,
k(c) = pH(c-cc).

Under these assumptions further consumption of the nutrient ceases where c drops to cc,
which occurs at an a priori unknown moving boundary. The cessation of consumption when
c = cc implies that if cd ^ cc there can only be one moving boundary, whilst if c& > cc

there are two moving boundaries corresponding to c = cd and c = cc. For simplicity
we shall assume that cc ^ cj, in which case there are two distinct regions to consider
corresponding to where c > cc and where c = cc. We also assume <S > 0 and kd ^k 0 and
use the notation

c> cc => a(c) = a+ > 0, b(c) = b+ > 0, k(c) = 0,

c ^ cc =» a(c) = -a" < 0, b(c) = -b~ < 0, k(c) - 0.

Since a(c) < b(c) for S > 0 we have a+b~/a~b+ < 1. Equation (4.2) implies that c" ^ 0
and, since c'(—oo) = 0, c is increasing in z- There is thus at most one point, z = Z say, at
which c increases away from cc. We now give the solution to the system in (i) z > Z and
(ii) z < Z, imposing continuity of n, c, c', and v at z = Z.

(i) z > Z. Using (4.3) and (4.5), and integrating (4.2), the solutions for the region
z > Z, where c > cc, are

a+
n = —, (4.6)

b+

c= 1+^rz(z-Z)--|(l-cc), (4.7)

v = U +a+z, (4.8)
since n(0) = a+/b+, v(0) = U, c(0) = 1, and c{Z) = cc; and by imposing c'(Z) =
0 we can deduce that
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(ii) z < Z. For the region z ^ Z, where c = cc, it is convenient in the analysis to
introduce the function N(z) = jf n{\jf)A\fi, so from (4.5) we have

AN a~ N* -N
n = -Tz=T-7^> (410)

where N" = -(a+2/b+a~)Z > 0 and W* = -(a+/b~)Z, so that N* < N*. Note
from (4.10) that N — N* is the only stationary point of (4.10); this point is linearly
stable as z —*• —oo, so we can deduce that n(—cc) = 0, implying necrosis. Solving
for N and v we get

t „ /N*-N\z) = -N + (Nt-N*)\nl ^ j ,

v = U +a+Z + b~N. (4.12)

( Z z ) N + ( N N ) \ n l ^ j , (4.11)

Imposing v(—oo) = 0 and continuity at z = Z we therefore finally obtain the growth
speed

this gives a unique speed U. The distribution of live cells for n < a+/b+ can be
calculated from equations (4.10) and (4.11), and in particular for n <§; 1 we have

z-z —-jnXn(n)> ( 4 I 4 )

which gives an indication of the depth to which quiescent cells survive within the
spheroid.

Ifwesetfl//* =0and«5= l , so tha ta + / i + = l,then£/ = - Z = [2(1 -c c)/ /3]i ,
giving a solution identical to that of Greenspan (1972) in the case of no inhibitory
effects or necrotic contraction (y = P = 0 in his model); this is to be expected since,
in this case, the models are equivalent.

A similar analysis can be performed for the case cc < cj, which is complicated by the
presence of two moving boundaries, but the details will not be pursued here.

4.3 Numerical solution of travelling-wave equations

For general values of mi and m2 we must resort to numerical methods for solution of the
travelling-wave ordinary differential equations. Far-field analysis for z -*• —oo reveals,
provided & > 0 and neither km(c) nor ^ (c ) is identically zero, that n -*• 0, v -*• 0,
and c —> Co (a constant). Linearizing the system (4.1-4.3) about these values we can
derive a set of asymptotic representations of the solutions for - z » 1, and for numerical
purposes this allows us to truncate to a finite domain on which we solve the relevant two-
point boundary-value problem. If we take L to be the length of the truncated domain, the
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equations are rescaled to the unit interval using y = z/L + 1 and, defining g — dc/dz, the
following system is to be solved numerically:

n' = L
n[a(c) - b{c)n]

v-U

c = Lg,

g' = Lk(c)n,

v = Lb(c)n,

(4.15)

(4.16)

(4.17)

(4.18)

where the primes now denote differentiation with respect to v. This system is subject to
the boundary conditions

n(0) = No exp I — -

a(Co)J

1,

k(C0)n(0),

n( l ) =
b(\)'

8(0) = - - Co],

where the constants A'o and Co must be determined as part of the solution. For com-
putational purposes we also require the value of n'(l), which is obtained by applying

2 o
-80 - 6 0 - 4 0 - 2 0

Depth from surface, i

FIG. 6. (—) The mitotic rate and (• • •) the live-cell density near the surface of the spheroid during the linear-
growth phase.
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FIG 7. Plots of the live-cell density against the tumour depth for five values of the exponent m = m\ = mi.

-70 -60 -:•50 -40 -30 -20 -10

Depth from surface, z

FIG. 8. Pkxsof the internal velocity against the tumour depth for five values of the exponent m = m\ — mi.

L'Hopital's rule to (4.15), as

c=\

a(\) db J-
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By fixing L, we have a fourth-order system of ordinary differential equations with three
parameters (U, No, Co) to be determined. The NAG routine D02AGF, which employs a
shooting and matching technique with Newton's iteration, was used to solve this system.

A close-up of the viable rim is given in Fig. 6, where the mitotic rate is plotted together
with the live-cell density for the set of parameters given in Section 3.2. Figure 6 illustrates
the decline of the proliferative properties of cells with depth into the tumour, producing a
region of nearly quiescent cells; these features are consistent with experimental observation
(Freyer & Schor, 1987), and again they were not an a priori imposition on the model.
Figures 7 and 8 show the distributions from the tumour surface of n and v, respectively,
for B/A - I, a = 0.9,/? = 0.005, cc = cd = 0.1 and for five values of the mitotic-
and death-rate exponents (mi = mi = m), so that the relevance of the analytical solutions
(for m = oo) given in Section 4.2 can be examined for more general values of km and fcj-
Figure 7 shows that the solutions for m ^ 4 are reasonably close to the analytical solutions;
and for m = 10, say, most of the plateau of the ^-distribution for z > Z is maintained.
However, the analytical solution is a poor approximation for m = 1. The variation in m has
a significant effect on the velocity, especially on its minimum, although the wave speed U
predicted by the analysis of Section 4.2 gives a reasonable approximation for m ^ 2.

The effects of the death-rate parameter B/A on the viable-rim size and the linear-phase-
growth velocity are shown in Figs. 9 and 10 (the other parameter values are those given
above). In Fig. 9 a measure of the thickness of the viable rim (arbitrarily defined to be
the region in which n > 0.1) is plotted against B/A. Increasing B/A implies that the
rate of cell death is increased in the nutrient-deficient region in the trailing part of the
rim, so that the width of the rim might be expected to be reduced; however, for the higher
values of m the width of the rim increases again for large B/A; this is due to the surface
cell density being so low that the consequent reduced rate of nutrient consumption allows
sufficient nutrient to penetrate deeper into the tumour. The curves drop back to zero as n(0)

2 3 4 5 6 7 8
Dimensiontess death-rate parameter, BIA

10

FIG 9. The effect of the death-rate parameter on a measure of the thickness of the viable rim.
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FIG. 10. The effect of the dimensionless death-rate parameter on the linear-phase-growth velocity.

approaches 0.1. The expected behaviour of a reduction in the growth velocity on increasing
B/A is demonstrated in Fig. 10. The point where U = 0 corresponds to the value of B/A
being such that a( l) = 0 ; clearly, if a(l) ^ 0 there is no region in the spheroid where the
mitotic rate exceeds the death rate, implying that the tumour will die out

5. The slow-death-rate limit, B/A «. 1

5.1 Introduction

In a nutrient-rich environment a small number of cells die through apoptosis and, if we take
6 to be the proportion of dead cells, we can derive the relationship B/A = 6/(\ —a) (see
the Appendix). In such circumstances it is known that only a small proportion of cells die,
suggesting 6 <C 1, and if we assume that 1 -a = 0(1) then the dimensionless quantity
B/A = £ « 1 and the death rate ka is O(e). Defining *d(c) by *d(c) = e)td(c), the system
of equations is

dn dn
T - + v— = km(c)n(] -n)-,
dt or

d

- (1 - 8)n],

or
= km(c)n-E(\ -S)kd(c)n,

which we shall now analyse in the limit e -> 0. The initial and boundary conditions are as
before.

Assuming a regular expansion of n of the form n ~ n0 + en\, it is easily demonstrated
that positivity of *m and kd implies n0 = 1 and nt > -St, where the latter suggests that
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the minimum time scale for 1 — n = 0(1) is r = O{\/e). This leads us to consider two
main time scales for tumour development, the first being t = 0(1), for which n ~ 1,
and the second being t = O(l/e), when necrosis begins. The analysis will demonstrate
that, following an initial near-exponential-growth phase, retardation occurs towards two
successive asymptotic speeds: the first is due to nutrient-diffusion limitations predicting a
maximum growth speed for the spheroid, while on a longer time scale further retardation
occurs due to cell contraction (S < 1) during necrosis, leading to the second (slower)
growth speed.

5.2 t = 0(\)

5.2.1 Formulation. Since n ~ 1 holds on this time scale for all r, the leading-order govern-
ing equations are

note that we have suppressed the conventional suffix zero here in denoting the leading-
order solution since it will be needed in a subsidiary expansion below.

On this time scale the leading-order system is a moving-boundary problem for the single
equation (5.1), subject to

dr
-ft etf.,,-1. f - I ^ . SCO,-!. <5.3>

at d

5.2.2 Small-fi behaviour. The experimental data given in the Appendix suggest that /3 lies
in the range 0.005-0.1, which prompts us to study the further limit in which p~ -*• 0 in
(5.1-5.3). Expanding in powers of /? we find that for/ = 0(1)

where k'm(c) = dkm(c)/dc, and So and S\ refer to the 0(1) and O(^) terms, respectively,
in the expansion of S. In this regime all the cells have an adequate supply of nutrient; this
leads, for the usual reasons, to exponential growth in So, and this is consistent with the
study by Greenspan (1972), for example. These expansions breakdown when t ~ ln(l//3)
so that S^ = 0(1/0) ; for / = ln(l//3) + 0(1), a full balance holds in (5.1) and (5.3)
under appropriate rescalings. The numerical and the asymptotic solutions for the growth
speed on the time scale discussed in this section are included in Fig. 11 for e = 0.01 and
ft = 0.1, with nt\ = m2 = 5, cc = cd = 0.5, S = 0.5, and a = 0.9. Figure 11 shows good
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FIG 11 Plots of growth speed against time for e = 0.01: (—) the numerical solution to the full system and
asymptotic approximations for ( - x - ) the early time scale, (— • —) the mid time scale, and (• • •) the long time
scale.

agreement with the early time expansion up to about t = 5, when the central cells cease to
proliferate, which slows the growth.

5.2.3 Large-time behaviour. We now discuss the large time behaviour of (5.1-5.3); the
analysis is applicable for t » 1 if/S = 0(1) and for t - ln(l//3) » 1 for 0 «C 1. For
(5.1-5.3) to be valid as a leading-order balance we also require that ( « 1/s. The results
of this section provide matching conditions for the larger time scales discussed below.

Following the early time scale of the previous subsection, the tumour spheroid grows
large and the concentration of the nutrient in the core diminishes through consumption, the
cells there consequently becoming quiescent. In discussing the equations (5.1-5.3) in the
limit r ->• oo two regions must be analysed, (i) a rim in which c — 0(1) and (ii) the central
core in which c <$C 1. Taking the limit S -*• oo, we seek power-series expansions of c and
v in terms of 1/5 for each region and then match them together; we shall find that S ~ qt
as / -> oo for some constant q, which is defined below.

(i) The viable rim. To focus on the rim region as 5 —• oo we translate the equations
using z = r — S(t) to fix the spheroid surface at z = 0, the rim being given by
z = 0(1). Equation (5.1) becomes

d2c 2 dc _

a ? + z + s~dl ~
c""

• c"1'
(5.4)

We write

c~c 0 (z) - ( -5- | (Oc,(z) ,

the expansion for i; being given in terms of c by (5.2). The fact that CQ and C\ are
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functions of z only is a consequence of the analysis that follows, but for brevity we
shall assume this from the start.

We thus obtain

IXC Cc T CQ

and using the matching condition that CQ —*• 0 as z —> —oo we obtain

The integral in (5.6) can be evaluated in closed form for integer m\; for example, in
the simplest case of m \ = 1 we have

Equation (5.6) implies

f — = -z. (5.7)

The correction term c\ satisfies

d2C| dco ,
—^—I" 2 — = pk (CQ)C\. (5.O)
dz dz

Hence

^-(h(co)
2p--h(co)^-cl) = -2h(co), (5.9)

dc0 V d dc

giving the integral expression for c\

where we have used /i(0) = 0 and c\ = 0 on z = 0.
It follows from (5.2) that D(Z, t) ~ h(co)/^ and, including the first correction

term, the growth speed of the tumour is given by

u(O,o = £ ~ , - I ^ f\ic)6c, (5.10)

where the constant q = h(\)/f} is the asymptotic growth speed of the spheroid on
this time scale, with 5 ~ qt, and it is readily calculated (at least numerically) for
any m\ using the definition (5.6). The speed q is therefore approached from below
as t -y oo, and it gives an approximation to the maximum growth speed attained by
the spheroid.
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In order to match into the core region discussed below, we need to determine the
behaviour as z -*• - c o , where Co ->• 0. It is easily shown from (5.6) that

c o ~ ^ ' " v
m 7 a s z - > - o o f o r m , > 1,

V 2(m, + l)cc / ( 5 1 I )

c o ~ /*0exp[(p7cc)iz] as z -+• -ooform, = 1,

where the constant Ao can in principle be determined from (5.7).
(ii) The core. The core region is given by p = 0(1) with p < 1, where we have in-

troduced p = r/S(t). In order to match into the rim, it follows from (5.11) that for
mi > 1 we have c — O(5~2/(m '~ l )), while c is exponentially small for mi = 1.
It follows from (5.2) that v = 0(5" (mi+l ) / (""~1)) for mi > 1 and is exponentially
small for mi = 1. The velocity in the core is thus small, and it makes a negligible
contribution to the speed of tumour growth; this is implicit in (5.10).

In the core we write, for mi > 1,

giving

\? ) - (5 12)
p * d p \ ? d p ) c ? ' ° ( 5 1 2 )

subject to

dp

as p ->• 1 Co ~ I

V 2(m, + l)c c '

where we have matched with (5.11). This may be illustrated by the special case
mi = 5 in which it is well known that the Emden-Fowler equation (5.12) can be
solved explicitly to give

Co - VF
For mi = 1 the leading-order solution in the core is given by

] (5.13)

where we have again matched with (5.11). Expression (5.13) is, as expected, expo-
nentially small in 5 and the full balance in (5.13) holds for r = 0(1); contrast this
with (5.12), which is applicable for p = 0(1) with mi > 1. We shall not discuss
the case mi < 1, for which the solution develops a region at the centre of the tumour
in which c is identically zero; for large t this encompasses the whole of the core
and some of the rim. Nevertheless, the qualitative form of the tumour growth rate is
unaffected.
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FIG. 12. Plots of the nutrient concentration against the radius for e = 0.01: (-
( ) asymptotic rim solution, and (— • —) asymptotic core solution.

70

-) numerical solution.

The matching of the asymptotic core- and rim-nutrient distributions is demonstrated and
compared to the numerical solution in Fig. 12 for e = 0.01 (see Section 5.2.2 for the
other parameter values) and t = 30, giving 5 * 72. Although t is approaching 1/e (and
n as 0.9 in the core), the asymptotic solutions still agree well with the numerical solution.
The growth speed given by (5.10) for this time scale is compared with the results of the
same simulation in Fig. 11. Observe that the corresponding curve (dash-dot line) picks up
the numerical solution around where the early-time expansion begins to fail. However, the
curves then diverge at about t = 15, where 5 « 30, but the numerical solution is picked
up by the long-time solution of Section 5.4 (given by the dotted line) at about / = 50.

There are two further time scales to discuss. On the first time scale (f = 0(£~ (m '~ l ) /2"" ))
for mi > 1) cell death starts to influence the core velocity, while on the second time scale
(/ = O(\/e)) a fully necrotic core develops, the asymptotic spatial structure being of the
qualitative form observed in practice.

5.3 t =

The leading-order behaviour in the rim on the first time scale is still determined as in
Section 5.2.3, so that S ~ qt, but, on introducing the seal ings

t = € f, T = E /*, C = E C,

the leading-order core solution for mi > 1 is given by

n ~ 1,

with

(5.14)
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atr=0 §>=0.
or

as f -+ 9f- c0 ~ [(m, - l)0(?f - r)2/2(m,

(cf. (5.12)), but the leading-order velocity is no longer given by (5.2); rather we have (since
*d(0)= 1)

so that

£)0 = l ^ - I ( l - 5 ) f . (5.15)
p or J

The second term in (5.15) represents the effects of cell death. It follows from (5.14) that Co
is of the form

co = r2 / ( m ' -1 )<P(r/f) , (5.16)

so for sufficiently large i the velocity (5.15) is negative, despite the fact that most cells are
still alive; this is a consequence of cell quiescence and death.

For m i = 1 similar behaviour occurs, the appropriate rescalings being of the form

t = tc(e)\n(\/e) + t, c = sc, v = ev,

where rc(0) = ( c c / ^ 2 ) i , and we obtain for r = 0(1)

n ~ 1,

(by a suitable choice of tc(e)) and

5.4 t = O(£~')

This is the second and final time scale of interest. The scalings appropriate to the core are,
for ni\ > 1,

t = t*/e, r=r*/e, c = eV(m'-[)c\

and we write

5 ~ 5o(f*)/e.

Expanding in the core in the form

C ' - C Q W ) , n~no(.r',n, v~vo(r',t').



MODELLING AVASCULAR-TUMOUR GROWTH 61

yields

^p + vo^ = -«o[l - (1 - <S)"oL (5.17)

j ^ ( 5 , 9 )

Equation (5.17) implies necrosis, with no < 1 now occurring; also note that no and vo
decouple from cj. The problem for no and Do is independent of m\ and remains valid for
m\ = 1, when c is exponentially small in the core. The required boundary conditions are

at r* = 0 v0 = 0, - ^ = 0,

as r* -»• S£(f *) n0 -»> 1, c ' -> oo, ( 5 2 0 )

as t* - • 0+ 5* ->• 0.

The condition on r* = 5Q arises from matching into the viable rim, whose structure is as
described earlier, so that SQ is determined by

^•=q-Q(n, (5.21)

subject to 5^(0) = 0. Here Q(t*) = -v0 (^(f*), '*) 'S determined by (5.17-5.20) so the
second term on the right-hand side of (5.21) is the (negative) contribution to tumour growth
due to cell death in the core, while the first term gives the rate of increase in size due to
cell proliferation in the viable rim.

On integrating, we obtain from (5.17) and (5.19)

^ - 0 - 8)vono = -v0. (5.22)

Using (5.20) we can deduce that Q(t*) satisfies

e + ( l _ , ) l | . (5.23)

Therefore, SQ and Q are determined by the system

dS*
dF = * - e- ( 5 2 4 )

j£ ( f ) - G > . (5-25)
with 5^(0) = 2(0) = 0.
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The system (5.24-5.25) has the small-time behaviour

\ ( \ - S)qt* - ^ ( l -
J 36

as t* -*• 0, while the large-time behaviour is

S* 8qt*+2(\ -S)q\nt*, Q ~ (1 - S)q - 2(1 -S)q/t*

(5.26)

(5.27)

as t* -*• oo. The reduction of the tumour growth speed SQ from q to Sq is to be expected;
as t* -*• oo, equilibration occurs between the total cell birth rate in the viable rim and the
total death rate in the core; the factor S corresponds to the loss of volume on cell death.
Thus we have U ~ Sq as e -*• 0.

In (5.24-5.25), SQ and Q are each proportional to q, the only other parameter being S,
Limiting cases of S are of some interest; some examples follow.

(i) 0 < 1 — S <K 1 (small volume loss on cell death). In this case

f - ( 1 - S)q + 2 jf (l-Vr-e-*)^V

and no is given to leading order by

In Fig. 13 this solution for n (dotted line) is compared with the numerical solutions of

0 200 400 600 800 1000 1200 1400
Radius, r

F I G . 13. Plots of the live-cell density against radius at I = 500. for e = 0.01 and 1 - S = 0.1: ( ) the
numerical solution of the full model, ( ) the numerical solution of the ( = O(\/e) model, and (• ••) small
I — & solutions.
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the full (solid line) and long-time models (dashed line) and the asymptotic solutions
for e = 0.01, 1 - 5 = 0.1, mi = m2 = 1, cc = cd = 0.5, and a = 0.9 for time
t = 500. The long-time curves are slightly displaced forward due to the difference
between 5 and SQ, but there is good agreement between the long-time solution and
the asymptotic approximation.

(ii) S = 0. This case corresponds to the case analysed by, for example, Greenspan (1972),
whereby it is assumed that (ultimately) cells lose all their volume following death;
note that if the time scales of cell death and decomposition are comparable then ka
should be interpreted as the rate at which cells die and decompose rather than simply
as the death rate. We obtain

S; = 3q(\ - e-''/3), Q = q(\ - e~''/3), (5.28)

giving growth saturation with the radius SQ = 3q.
(iii) 0 < i « 1 (large volume loss). For t* = 0(1), the solution is given at leading order

by (5.28). On the longer time scale T* = 0(1), with 7" = Sf,

S* - 2q\n(SZ) ~ qT* + 3q - 2q\n(3q), Q~q,

which indicates how the large-time growth speed Sq is established.

Given SQ and Q, (5.19) and (5.22) may easily be solved by characteristic methods to give
the solution in terms of a parameter r* as

r'3 = S0'V) -3G(r')S0'V)(l - e r V ) ,

vo = -G(r')<£V)er'e-'7r'2,

no = er'e-'7[<S-|-(l - <S)erV].

The most instructive aspect of this solution is the behaviour as t* -> oo, for which we have
(using (5.27))

<5<7ln|

(5.30)

where z* = r* —5g(f*). The solution thus evolves to a travelling wave of width z* = 0(1)
where the cells, which have become quiescent in the viable rim, then die. In other words,
for large t* we have the following three-layer structure.

(i) Viable rim, 5g(f*) — r* = O(e/J~i). The behaviour in this region is determined by
the availability of nutrient, as described by (5.5). The cells become quiescent within
this layer,

(ii) Quiescent layer, S^{t*) — r* = O(l). The behaviour is governed by the rate of cell
death in the absence of nutrient and is given by (5.29-5.30).

(iii) Necrotic core, r* = O(t'), r*/Sqt' < 1. Here the live cell concentration is expo-
nentially small.
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) 20 40 60 80 100 120 140 160 180 200
Time, I

FIG 14. Plots of the growth speed against time showing the numerical solution of ( ) the full model and
( ) the long-time solutions for e = 0.1 {upper curves) and e = 1 (lower curves).

We have thus derived this well-established structure by asymptotic methods as a natural
consequence of the model, rather than by a priori assumptions.

Figure 11 gives the growth-speed curve for e = 0.01. The long-time solutions for larger
values of e are shown in Fig. 14 for e = 0.1 and e = 1; the other parameters are as given
in Section 5.2.2. The graph shows very good agreement for the case e = 0.1 as the speed
tends to its asymptote U «s 1.53. Even for e = 1 the qualitative agreement is surprisingly
good. Note that with these parameter values the case a(l) = 0, implying U = 0, occurs
when e « 7.6.

6. Discussion

Existing mathematical models, such as that of Greenspan (1972), assume that a spheroid
is divided into compartments of growing live cells, mitotically inhibited cells, and (con-
tracting) dead cells. These simple models can capture all phases of spheroid growth and
provide a means of gleaning information through analytical study, but this is at the cost
of imposing a priori a number of assumptions about tumour structure. The tumour-growth
model presented in this paper is new in that it treats the tumour spheroid as a continuum of
both living and dead cells, with the local volume change from growth and death creating a
continuous velocity field within the spheroid. The diffusion and consumption of a generic
nutrient are the only mechanisms for driving cell growth and death which are included, and
the model succeeds in capturing (without ad hoc assumptions) the initial ('exponential')
and the later (linear) phases of growth. This suggests that the diffusion of nutrients is per-
haps the most important factor in governing spheroid growth during these phases. Further,
fairly good quantitative agreement with the available experimental data can be achieved.

It is well known that the presence of nonproliferating cells in tumours significantly af-
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fects the success of treatment via radiotherapy. This mode of therapy tends to target the
proliferating cells; the surviving quiescent cells can thus proliferate afterwards because of
the renewed nutrient supply, and the tumour may then recover. The prediction of an inner
rim of quiescent cells due to low nutrient levels arises naturally from the model; its exis-
tence is due to a time lag of cells dying under these conditions. It was shown in Section
5 that this time delay is responsible for the two phases of growth retardation following
the initial exponential phase, the first being due to nutrient-diffusion limitations preventing
the core cells from proliferating and then a second retardation occurs due to necrosis. In
practice, this type of behaviour will be difficult to observe, since most experiments start
with a spheroid consisting of O(K)5) cells; the travelling-wave formulation of Section 4
and the long-time equations of Section 5.4 is then the most appropriate formulation. Nev-
ertheless, it would be interesting to have experimental confirmation of the phenomenon.
The analysis of Section 4.2 offers insight into the linear-growth phase of the spheroid,
and equation (4.14) provides a useful indication of how deeply quiescent cells extend into
a well-developed spheroid. In order for more detailed quantitative comparison to be pur-
sued, there is a need for more experimental data, especially with regard to cell death in
nutrient-starved conditions. In particular, precise experimental values for the maximum
death-rate parameter, B, would be valuable in assessing the validity of the assumptions of
the analysis in Section 5.

There is some interest in obtaining ordinary-differential-equation (or, better still, ana-
lytical) formulations for tumour growth, for example, in order to assess by simple means
the role of the various physical mechanisms. The asymptotics of Section 5 go some way to
deriving such models from physically more realistic partial-differential-equation formula-
tions. Some examples follow.

(i) For t = 0(1) and /J <JC 1 the moving-boundary problem (5.1) and (5.3) for a single
quasisteady reaction-diffusion equation describes the transition from an exponential-
growth to a linear-growth phase. This formulation can be further simplified to a single
first-order ordinary differential equation in / in some special cases; notably, m\ y>> 1,
and the linear case m\ = 1, cc » 1.

(ii) For t = 0(\/e) the formulation reduces to a second-order system of ordinary dif-
ferential equations (5.24) and (5.25), which can be solved analytically for limiting
values of S. For <5 > 0 this gives a transition from one growth rate 5 ~ q to a slower
one 5 ~ Sq. While for <5 = 0 it provides a transition from linear growth to satu-
ration; this makes explicit an unphysical assumption that is inherent in the existing
approaches to saturation, namely that the material which comprises a cell completely
disappears after its death.

Figures 11 and 14, in particular, indicate the applicability of such simplified versions of
the model. Note that on the time scale of Section 5.3 the tumour growth is simply linear to
leading order.

Finally, note that for <5 > 0 the current model lacks any mechanism to produce the even-
tual saturation of spheroid growth. In experiments, it is observed that a viable rim of cells
remains during saturation, with a regular doubling time. Although several studies have in-
vestigated the effects of environmental factors on the eventual saturation size, there is very
little information on what actually causes the saturation of growth. Mitotic inhibitors have
been extracted from the necrotic core (see, for example, Levine et ai, 1984), and these prc-
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sumably diffuse through the spheroid affecting the mjtotic behaviour of some of the cells;
however, this mechanism alone cannot be responsible for saturation since it requires that
all the cells be inhibited if a continued increase in volume due to cell reproduction is to be
prevented; this contradicts experimental observations. During mitosis, the reduced strength
in binding between cells may cause individual cells to be shed into the surrounding matrix
(Weiss, 1978; Landry et al., 1981) however, the cells that remain will still be reproducing
so this mechanism cannot explain growth saturation either. In the models of Greenspan
(1972) and subsequent similar studies, the crucial parameter for saturation arises in an ex-
pression stating that the contraction rate of the necrotic core is proportional to its volume;
it is suggested that this is due to the process of disintegration of necrotic cellular mate-
rial into simpler permeable compounds with a subsequent loss in volume. However, no
indication is given as to what causes the disintegration of the necrotic products or as to
what ultimately happens to the chemicals produced. Currently under investigation are pos-
sible mechanisms for the volume loss in the necrotic core due to the utilization of necrotic
products by neighbouring live cells and through leakage by diffusion into the surrounding
matrix. An extension to the mathematical model of this paper can then lead to the predic-
tion of growth saturation, again without making any assumptions on the spheroid structure.
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Appendix: Parameter values

The notation in this appendix reverts to that of the model prior to nondimensionalization.
Despite the huge amount of experimental literature available, it is difficult to accurately
assess a number of the parameter values required for the model. Cell diameters are in the
range 10-100 ^m (Melicow, 1982) depending on the cell line, with VL % 10~9 cm3 per
cell being typical (Li, 1982a; Casciari et al., 1992a). In the model described by Landry
et al. (1982), Vp ^ 0.5V^ was assumed. The diffusion coefficient of the nutrient will
again be dependent on the type of nutrient and cell line; that of glucose has been mea-
sured to be 1.1 x 10"6 and 4 x 10~7cm2 s""1 by Casciari et al. (1988) and by Freyer &
Sutherland (1983), respectively, while that of oxygen is around 2 x 10~5cm2 s~' (HIatky
& Alpen, 1985). Casciari etal. (1992b) modelled the oxygen consumption as a function of
glucose concentration and pH, giving an estimated critical (cc) concentration for oxygen of
1.5 x 10-7gcm~3 for EMT6/RO spheroids. HIatky et al. (1988) investigated two cell lines,
indicating critical glucose concentrations of 1.4 x 10~4and 1.1 x 10~4gcm~3 forV79and
9L cultures, respectively. The value of the external concentration c$ depends very much on
the proximity to the vasculature of the tumour in vivo or the experimental conditions in
vitro.

In terms of the model the rate of growth is given by km(c) — ka{c) and, if the dou-
bling time is T for a concentration c, km(c) - kd(c) — ln(2)/7". Li (1982b), plotted the
growth rate as a function of glucose concentration revealing a near-step-function relation-
ship. Adopting the step-function forms of km and k^ and assuming that the doubling time
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is of O( 14 hours) under optimal conditions it follows that

A- B(\ -a) % K r V . (A.I)

Even in an optimal nutrient environment, a small number of cells are in practice, observed
to die through apoptosis; for example, around 5% of the surface cells in developed cervical
cancers (Moore, 1987) are dead. If the proportion of dead cells is taken to be 6 <K 1, then
the live-cell density is approximately 1 — SO and, using the assumptions on the long-time
behaviour of n above, we have

A as fi(l -a)/G. (A.2)

From this we can deduce that B(\ — a) is small compared to A so, from (A.I), A %
10- 5 s - ' .

In the papers cited above, the rates of consumption of both glucose and oxygen fit well
with the Michaelis—Menten formula (mi = 1), with the critical concentrations for both the
growth rate and consumption rate being of a similar order for both glucose and oxygen.
This suggests that f5km(c) + y(c) is approximately proportional to km(c), so that either
y (c) = 0 or y(c) as ykm(c) for some constant y. In the latter case we can absorb y(c) into
pkm(c) by redefining /J and setting y(c) = 0. Either way the maximum consumption rate
is given by 0A. Li (1982a), Hlatky etal. (1988), and Casciari etal. (1992b) all found that,
for various cell lines, the maximal consumption rate, fiA, is about 2 x 10~l4gcell~' s"1 for
glucose, and Casciari et al. (1992b) gave ft A * 2 x 10~l5gcell~' s~' for oxygen. There
currently appears to be no appropriate data available on the remaining parameters B, c,i,
and a. Thus the values adopted in our numerical simulations are estimates.

The parameter values given above are clearly only approximate, and much manipulation
of the existing data is required to derive these estimates. Suitable values for the exponents
m\ and m^ are difficult to deduce from the reports of Li (1982a,b), Casciari et al. (1992b),
and Hlatky etal. (1988), since Li (1982b) suggested that these exponents are significantly
greater than one in the relation of cell growth to glucose concentration, whereas the other
reports indicated that the consumption of glucose (as a function of its concentration) (its
very well to Michaelis-Menten kinetics, m\ = 1. This discrepancy may be a source of
quantitative error in the numerical simulations, although most of the mathematical analysis
in this paper requires only that m \, m2 > 1.
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